Eicosapentaenoic acid and 3,10 dithia stearic acid inhibit the desaturation of trans-vaccenic acid into cis-9, trans-11-conjugated linoleic acid through different pathways in Caco-2 and T84 cells.

نویسندگان

  • Bénédicte Renaville
  • Anne Mullen
  • Fiona Moloney
  • Yvan Larondelle
  • Yves-Jacques Schneider
  • Helen M Roche
چکیده

Stearoyl-CoA desaturase (SCD) is a key enzyme that determines the composition and metabolic fate of ingested fatty acids, in particular the conversion of trans-vaccenic acid (TVA) to conjugated linoleic acid (CLA). The present study addressed the hypothesis that intestinal TVA absorption and biotransformation into CLA can be modulated by EPA and 3,10-dithia stearic acid (DSA) via altered SCD mRNA levels and desaturation indices (cis-9, trans-11-CLA:TVA and oleic acid:stearic acid ratios) in Caco-2 and T84 cells, two well-established in vitro models of the human intestinal epithelium. The study determined the effect of acute (3 h with 0.3 mm-EPA or 0.3 mm-DSA) and acute-on-chronic (1 week with 0.03 mm-EPA or -DSA, followed by respectively, 0.3 mm-EPA or -DSA for 3 h) treatments. In both cell lines, acute EPA treatment did not alter SCD desaturation indices, whereas the acute-on-chronic treatment affected these surrogate markers of SCD activity. This was associated with reduced sterol regulatory-element binding protein-1c and SCD mRNA levels. In contrast, acute and acute-on-chronic DSA treatments significantly reduced SCD desaturation indices without affecting SCD mRNA levels in Caco-2 cells. The present study on intestinal cells shows that the conversion rate of TVA to c9, t11-CLA is affected by other fatty acids present in the diet such as EPA, confirming previous observations in hepatic and mammary cell models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Biohydrogenation and Effects of Tannin on It

The process called biohydrogenation occurs mainly in ruminant animals and during it, unsaturated fatty acids, and particularly poly-unsaturated ones (linoleic and linolenic) coverts to a saturated form of stearic acid. For many years, the beneficial effects of biohydrogenation intermediate fatty acids like cis-9 trans-11 linoleic acid, the main natural isomer of conjugated linoleic acids (CLA),...

متن کامل

Endogenous synthesis and enhancement of conjugated linoleic acid in pasture-fed dairy cows

The primary conjugated linoleic acid (CLA) isomer in milkfat, cis-9, trans-11 CLA, is a proven anticarcinogen in rodents and can be derived directly from ruminal biohydrogenation of linoleic acid. The major fatty acid in pasture, however, is α–linolenic acid; the biohydrogenation of which does not produce cis-9, trans-11 CLA as an intermediate. Therefore, in grazing cows, cis-9, trans-11 CLA mu...

متن کامل

Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid.

A survey of 30 representative strains of human gram-positive intestinal bacteria indicated that Roseburia species were among the most active in metabolizing linoleic acid (cis-9,cis-12-18:2). Different Roseburia spp. formed either vaccenic acid (trans-11-18:1) or a 10-hydroxy-18:1; these compounds are precursors of the health-promoting conjugated linoleic acid cis-9,trans-11-18:2 in human tissu...

متن کامل

Conversion of t11t13 CLA into c9t11 CLA in Caco-2 Cells and Inhibition by Sterculic Oil

BACKGROUND Conjugated linoleic acids (CLA), and principally c9t11 CLA, are suspected to have numerous preventive properties regarding non-infectious pathologies such as inflammatory diseases, atherosclerosis and several types of cancer. C9t11 CLA is produced in the rumen during biohydrogenation of linoleic acid, but can also be synthesized in mammalian tissues from trans-vaccenic acid (C18:1 t1...

متن کامل

Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids.

Knowledge of the fatty acid profile of microbial lipids is of great nutritional importance to the animals and, subsequently, their products. This study was conducted to examine the fatty acid profiles of mixed rumen bacteria and protozoa. Bacterial and protozoal cells were isolated by differential centrifugation of rumen contents. The main fatty acids were palmitic (16:0) and stearic (18:0) in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 2006